

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

5

Learning Management Systems
and the Realities of Using

Open Source Software

PHILIP ROY

COLLEGE OF HUMANITIES AND SOCIAL SCIENCES,
MASSEY UNIVERSITY

PALMERSTON NORTH, NEW ZEALAND

INTRODUCTION You would not buy
a car or house with faults and a limited
guarantee, so why buy software like
that? This question is presented as part
of an argument for rejecting proprietary
software and considering the use of open
source software (Wyles & Clayton, 2004).
Questions like this, along with similar
comments in presentations concerning
open source Learning Management
Systems (LMS), often fail to look
completely at the pros and cons of using
open and malleable software. Instead,
they focus the argument against the
software you might be using within
your institution by suggesting that you
will be able to avoid the “big brother”
commercial companies, might be able
to circumvent your own information
technology support department, or will
get to tinker with the inner workings
of something you might previously
have been unable to touch. Is this really
the way in which we should promote
the benefits of open source software—
by talking about what it is not rather
than what it is?

Of concern is that it is incredibly easy
to see open source software through
rose-tinted spectacles. The open source
user community is massive, vibrant,
supportive, collaborative, and incredibly

active—but not always. It is important
when looking at open source projects to
realise that the projects you don’t see,
the projects that failed or forked
(development being split and taking
separate paths) or had no clear direction,
are as important to acknowledge and
understand as those active projects
being talked about throughout the
e-learning community.

BEHIND THE CONCEPT OF OPEN

SOURCE An analogy can help explain
the nature of open source software.
Imagine a group of parents on a
working bee who come together to
build a community playground. Some-
body probably came up with the idea
because of a perceived need, and the
passion and enthusiasm they have finally
gets a group of people together to start
the building process. The people that join
in come with a variety of skills. Some will
be more suited at involving themselves
in the planning stages or in project
management. Others might get stuck in
and be far more hands-on with hammer
and nail. Others might make lunch on
the sidelines, brew the cups of coffee to
supply the working group, or may just
make a financial contribution to the
cause. The project is collaborative. It is

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

6

owned by everyone and developed
together. People are free to come and go
as they want and free to take whatever
they have learned from the experience
and use it elsewhere, to build again
another day. The development of open
source software is based upon a similar
approach. A perceived need for a piece
of software then sees a group of experts
band together to develop the software
and make it available to anyone wanting
to make use of it.

The birth date of the open source
movement is somewhat ill defined, and
its origins are often associated with the
ongoing development of the Internet
and Web technologies. The concept of
open source was in fact in existence for
many years prior to the Internet, but a
defining moment in its history includes
the attempt by the developers of the
Netscape Web browser to commercialise
and dominate the browser market as
surfing the Web became more popular
(Newman, 1999).

These attempts went against the
standing ethos of freely distributable
and shared programming. For many
years academia had thrived on the
ability to exchange technical develop-
ments with colleagues for the sake of
research. Those wanting to make money
from such idealistic aspirations were
now challenging this right.

Richard Stallman’s frustration at
attempts at the commercialisation of
software code, his development of the
GNU license (the license by which many
open source projects are distributed), and
his announcement that he would develop
a Unix-like operating system for all to
use are other important milestones in the
open source movement (Stallman, 1998).
The latter event led to the involvement of

Linus Torvalds who, in the early 1990s,
developed the kernel for the Linux
operating system, which is perhaps the
best-known open source project.

Recently the use of open source
software has gained prominence thanks
to the Internet and the ability to
communicate and establish widespread
online communities, as well as the
ability to quickly distribute software.
At the same time, an increase in the
“distrust of Microsoft’s dominance has
pushed the previously fringe elements of
free and open source software into the
lime light” (Siemens, 2003).

THE ADVANTAGES OF AN OPEN

SOURCE LMS The collaborative nature
of open source software is something
that many people take tremendous
comfort in. Glass (2003) suggests, “The
open source movement is analogous to
a utopian society. In utopian societies,
people tend to believe they are onto
something so powerful that it is
fundamentally life-transforming, and
they are willing to devote themselves
wholeheartedly to the utopian movement
of their choice” (p. 23). As Reynolds
(2003) points out, “These products are
good because there is a collaborative
community surrounding each of them
in which people listen to the ideas of
others and are willing to change.” Many
in the open source community also see
the projects they are involved in as
allowing for the freedom that proprietary
software fails to offer.

The main developer of the Moodle
Course Management System (http://
www.moodle.org) places tremendous
emphasis on the collaborative nature
of the project and is actively involved
in researching and promoting the most
effective way to continue its develop-

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

7

ment, promoting what he calls a “social
constructionist pedagogy” towards its
development (Dougiamas & Taylor,
2003). The Special Interest Group in
Open-Source Software for Education in
Europe (SIGOSSEE) sees the collaborative
and adaptable nature of open source
as advantageous. They believe that
open source software allows for the
reflection of particular course content
or pedagogical approaches, for the
fostering of a “community” of institutes
that support the exchange of ideas and
concepts, and is an approach that
allows for learners to become involved
in improving the software. They also
believe many institutions make use of
open source systems because of the
institution’s need to cut costs.

Within a New Zealand context, many
extol the virtue of open source LMS,
specifically because the products are
free in cost and free from ownership
by a commercial company. This means
not only are you able to be involved
in using an open source LMS—the
institution implementing the tool can
access its code, determine how it works,
alter code, and have more freedom over
how to incorporate it into its structure
and existing systems. Ultimately the
open source community hopes these
alterations are fed back into the
community for the betterment of the
open source project as a whole. LMS
such as WebCT and Blackboard started
their life within a university environ-
ment with the freedoms noted here.
While it would be interesting to
consider their path of development
within an open source approach, many
still suggest that even open source
developers “should ultimately involve
commercial software providers in their
efforts” (Olsen, 2003).

THE REALITY OF OPEN SOURCE
The analogy presented earlier has
another side. Picture summer days of
garage sales and bake-offs, but also recall
the devastation caused to a project by a
key parent leaving town. Remember the
arguments during the project and the
sheer frustration of seeing the first
children rushing to use equipment being
from parents who steadfastly refused
to get involved or contribute. These
memories portray another face of open
source software development.

Approaches used for development of an
open source project, the climate under
which creation, bug fixing, and code
writing occur, are as important to the
success of a project as the functionality
that is the end result. The approach of
having multiple developers who choose
themselves whether to stay involved
and (more importantly) how to be
involved means there is tremendous
independence within any development
group. Therefore, when considering
using an open source LMS, it is important
to look at the history of the project in
some detail, take the time to discover
just how active the project is, and
determine the level of support (both
from the user community and from
other sources) that it receives.

What has been interesting to note,
with recent enthusiasm towards open
source LMS, is how little people know
of the historical events surrounding the
software’s lifestyle. Given that it would
be vital to consider these sorts of details
with a major commercial purchase, the
same robust approach should be taken
when looking at using open source.
Indeed, given that open source usually
relies heavily on the volunteer developer
base to the project, it is important to
take some time to understand just how

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

8

strong that base is. In that respect, one
must set aside the enthusiasm of using
such software and address the realities
of development.

As an example, consider ILIAS, a popular
open source LMS and one of three
systems short-listed for an evaluation by
the eCDF-funded Open Source VLE
project. For the early part of 2004, the
ILIAS Web site (http://www.ilias.de)
had as its major news item that the
University of Cologne had funded
another nine months of development.
It announced this with the proclamation,
“We will go on.” The fact that a
substantial research project in New
Zealand short-listed a piece of software
proudly promoting the saving of its
demise (for at least nine months) does not
reflect upon the research project, but on
the fragility of open source. While “open”
often means public and readily visible,
we should not immediately assume that
a visible presence online, combined with
available patches, updates, and a wider
talkative community associated with
a project, implies either a large and
stable developer base or strong
future development.

Because of the large range of roles
within an open source community, it is
important to realise that the idea of a
“community base” within an open source
context does not necessarily mean an
active base of people involved in the
project. Simply making use of an open
source project does not mean that a
person is an active contributor. So
although it is easy to look at the activity
occurring within an open source LMS or
to look at the suggested “install base”
of such a project, such figures can be
misleading. Given the hands-on and
freely distributable nature of open source
software, such data will not distinguish

between a large and active installation or
someone simply downloading and trying
out the software. In reality, it is easy to
find examples of just how quickly an
open source project’s progress can be
affected even though that project may
appear to be in heavy use.

Given the nature of open source
projects—the freedom to be involved, the
freedom to determine the extent of that
involvement, and the freedom to express
opinion and disagree with the underlying
principles of a project—it is possible
for key players or participants to hinder
project development easily, particularly if
their contribution plays a vital role in
the software’s development. Because of
the “openness” of open source projects,
the internal politics of development are
often far more public than anything
we might see in the commercial software
development world. The recent history of
Xoops illustrates this point.

Xoops is a highly popular open source
Content Management System with an
activity rating on the Sourceforge site
(http://sourceforge.net) of 99.86 percent
(meaning it has an incredibly active
community) around the time of writing.
The Xoops community was thrown into
turmoil in the middle of 2004 when one
of the most highly revered developers
(known only as Catzwolf) closed his
sister site and replaced its main page
with a lengthy explanation as to why he
had shut his site down. Part of his
statement said:

I have come to a stage where I do
not believe in the direction that
Xoops is taking now and I cannot
ignore this anymore. What was once
in my eyes a clear path forward
has become nothing but a farce
and I have become disillusioned

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

9

in its purpose and I do not see
this changing. (http://wfsections.
xoops2.com/)

What took place over the 48 hours after
this posting is as interesting to the history
of the project as the software itself. With
47 postings by users to a thread in the
forum on the main Xoops site, entitled
“What happened to Catz?”, and more
than 700 users reading this thread,
visitors to the site witnessed frenzied
activity as people tried to establish why
the events had taken place, with
members of the Development Team
confessing they were as much in the dark
as anyone else.

Postings quickly appeared with titles
such as “Putting it in perspective” and
“Is Xoops development dead?” and
appeared to conclude with a posting
entitled “Announcement regarding
Catzwolf’s rash departure,” where the
leader of the Core Development Team
explained he had just made a two-hour
transatlantic phone call to Catzwolf to
resolve issues. At the same time, he
announced that Catzwolf was back on
board and would be co-sharing core
module development responsibilities,
which was an area that Catzwolf’s
posting had criticised. It is interesting to
note that some four months later,
Catzwolf did indeed end his involvement
(albeit quietly this time) with the project
and has never returned.

Xoops is also a curious project if you
delve further into its history. Xoops is
based on another open source project,
but was spun off in a different direction
(known as “forked” in the coding world)
by a group of disgruntled developers
who left the first project. Xoops itself
has also been forked into a project know
as e-Xoops, which became embroiled in

arguments in the middle of 2004 as the
development team became divided over
something as simple as a name change
to the project. With nothing but a
voluntary commitment to the project,
developers came and went as half the
team wanted to retain a name connecting
it to Xoops, while others felt it was
time to move forward and break all ties
with the software from which it was
initially spawned.

Although commercial software develop-
ment may also suffer from disagreements
over coding and usability, there is
greater consideration and stability with
many of these projects, as well as greater
thought given to a more holistic view of
the software, including documentation.
Conversely, with an open source project,
you are more likely to find someone
admired for his or her programming
brilliance as opposed to a methodical
development approach (Wilson, 1999). In
many cases, it is left to the community
growing around a project to develop the
support and documentation.

In addition, open source projects are
founded on coding that may be
sufficiently complex in nature to require
high-level expertise. Despite the concept
of open source software suggesting
accessible and malleable software, “The
notion of the average user feeling free
to change the open source product is a
highly mixed blessing, and one unlikely
to be frequently exercised” (Glass, 2003).
Many at the end-user level may have
comments and suggestions to see the
future development of an LMS enhanced,
but their ideas may fall flat if not
supported by the community or by
a developer willing to make coding
changes in order to implement the ideas.
So even with an open source project,
users can become reliant on those with

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

10

skills superior to their own. In the case of
Xoops, Catzwolf could be seen by some
as a hero, while others might view him
as a precocious developer who got his
way through grandstanding.

What of such events by a programmer
in the commercial software world?
While commercial software packages
do sometimes reach their “end of life,”
the decision to do so is taken using
more business-like criteria (sales, cost of
development, etc.) than on the basis of
a personal grievance. Such an event,
Dalziel (2003) says, often “splits the
original open-source developer commun-
ity into separate groups, potentially
weakening both efforts” (p. 5).

WHY ARE YOU REALLY

INTERESTED? Those contemplating
implementing or becoming involved
with an open source LMS should take
the time not only to look at the history
of the project, the number of developers
involved, and the technical requirements
of the system, but also to consider what
would happen if the project were to fail.
Take the time to find out just who the
people are that you might be about to
rely on (don’t be quick to believe you’ll
rely upon yourself) and just how many
people truly are actively involved.
Not actively enthusiastic, but actively
involved. In “Open Source: Beyond the
Fairy Tales,” Gabriel and Goldman
(2002) point out that many see the use of
open source development as a way
of reducing costs of coding and believe
the project will evolve faster as many
developers will be working on it. The
reality is, they say, “A typical open-
source project attracts relatively few
outside developers” (p. 1).

Any historical inspection of a project
should also determine whether a

project has received funding. However,
while it might seem easy to assume that
an open source e-learning project that
receives funding is likely to be more
successful, Dalziel (2003) paints a more
realistic picture:

Most open-source e-learning
projects have not arisen
spontaneously from the goodwill
of freelance software developers.
They are typically the result of
government or foundation funding,
where developers are paid for
their contributions to the project
(either as contractors or as salaried
employees of organizations such
as universities). In the wider open-
source movement, a voluntary
community of developers supports
projects such as Apache or Linux,
hence their ongoing development
is independent of the vagaries of
project funding. This is not the
case in e-learning, making any given
open-source developer community
highly susceptible to collapse when
project funding ends. (p. 5)

Current New Zealand open source
initiatives, exploring the use of an open
source Learning Management System,
saw more than $1 million allocated to
research projects through the e-Learning
Collaborative Development Fund. It is
encouraging for all interested in this area
to see research and development being
funded on such a scale. However, in
order to move forward with open source
software projects like the ones occurring
in New Zealand, projects that imply free
software, it is important to acknowledge
that time, effort, and funds will continue
to play a major role in the success in
developing and using them. Philip Long,
Senior Strategist for the Academic
Computing Practice at MIT, summed it

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

11

up when asked if one value of the open
source Course Management Systems was
saving money. His response was succinct
and to the point: “I’m very sorry that
so many of you think that’s a
likelihood, because you’ll be sadly
mistaken” (Campus Technology, p. 16).

It is the hidden costs in using open source
software that people need to be most
aware of. It is not only the developers
who need support during the lifecycle of
a project, but the user community. While
some may not see the non-technical user
community as those who define an open
source project’s structure, it will be this
group that ultimately determines its
success or failure. A vibrant community
of users must be funded and encouraged
in their use and support of a project,
including the development of material
to achieve the pedagogical goals behind
using the chosen LMS software.

If open source products are seen as
a better solution to the commercial
products that many use, what is it about
the functionality of a commercial product
(ignoring their so-called lack of
malleability) that no longer appeals? In
many instances, the answer will be
hard to find but begs the question as to
whether those who are enthusiastic are
actually looking at what the software
means to the end user as opposed to the
end installer. Are those using a product
like WebCT or Blackboard using it to its
full potential or could something more be
done with it? The next best thing doesn’t
always mean moving away from what
you’ve already got, but working better
with what you already possess.

Finally, perhaps open source software,
with its community focus, should in
fact open our eyes to the value of a
collaborative approach in e-learning. A

discussion on the NZ Open Source VLE
Project Web site was on the suggestion of
a centralised support system (Help Desk)
for users of Moodle. Currently a number
of New Zealand’s tertiary institutions
make use of WebCT or Blackboard, but
there have never been any strong
arguments by institutions to share
resources. This raises the question, “If we
feel a sense of community is important,
why have many of us not embraced the
online community that surrounds these
commercial products already?”

The most likely answer to this question
is that institutions view their installation
of a commercial LMS as being set up
differently to others’, and consider that
having localised support people who
know the set-up and know their own
staff is a more effective way to offer
support. Those aiming to move to a
provided service where an open source
LMS is set up externally (but still able to
be altered to suit each client’s needs) may
find that, given the malleability of such
software, the commonalities that exist
between various versions of the software
may in fact be few and far between,
and therefore centralised support may
be difficult. This point highlights the
tension between a centralised service
and collaborative but independent
functioning. The former provides
economies but constrains local creativity,
the latter allows development freedom
but eventually leads to fragmentation.

BUYING OFF THE SHELF Scalise (2004)
comments that in educational institutions
the justification for using proprietary
systems is often stability. However, he
points out that this double-edged sword
sees a trade-off between the stability the
software provides and the resulting use
of what is effectively a closed system,
often with diminishing innovation.

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

12

It should be noted that this lack of
flexibility is also in some way a reflection
of the business processes involved in
development of commercial software.
Chris Vento, Executive Vice President
for Research and Development and Chief
Technology Officer of WebCT, points
out the stability and rigidity of
commercial software in his Web article
“Open Systems and Open Source LMS:
Settling the Debate for the Benefit of
Higher Education” (2004):

Commercial Open System providers
have made significant and
continuous investments in building
and sustaining highly scalable,
extensible, and comprehensive
products. Commercial Open
Systems incorporate quality and
performance engineering/testing,
ongoing software maintenance, a
formalized feature enhancement
process, customer support, and
professional services required to
effectively support an enterprise
eLearning solution.

Beckman and Wilson (2000) suggest
that when a commercial project proves
troublesome, the company producing it
is still likely to ship the product, whereas
a troublesome open source project is
most likely to be abandoned. Therefore,
when reviewing open source projects
that are available to use, you are less
likely to find one that has a wide range
of technical issues, as most of these are
abandoned. They argue that this fact
positively skews the success rate of
open source projects in comparison to
commercial software.

INTEROPERABILITY: IS MEETING

IN THE MIDDLE THE SOLUTION?
As the development of both commercial
and open source LMS projects continues,

there has been acknowledgement of
the need for open standards to allow
interoperability between commercial
packages and other systems. Open
standards such as the Sharable Content
Object Reference Model (SCORM) and
the Open Knowledge Initiative have
benefit in that “interoperability means
that users are not locked to any one
software system—they can substitute
one standards-compliant system for
another” (Dalziel, 2003, p. 5).

With commercial companies such as
WebCT committing to many of the open
standards such as those developed by
the IMS consortium (of which WebCT
is a consortium member), perhaps our
efforts with open source lie in
embracing these standards and the
interoperability that can be achieved
even while utilising proprietary software.
Dalziel (2003) supports this idea and
argues that open source software “is
not free of risks and is not necessarily
the most cost-effective option where
commercial vendors have implemented
open standards and demonstrated easy
interoperability” (p. 6).

It would be financially detrimental to
commercial vendors to keep their
systems closed and inaccessible to other
systems. The environment in which
an LMS is implemented may see it
surrounded by a myriad of other systems
such as student management software,
fees payment, results processing, and
enrolment mechanisms. Integration is
essential and many LMS companies not
only provide systems for e-learning but
products for other aspects of institutional
life, such as Blackboard’s Portal System,
Content System, and Transaction System.
Many of the developers of commercial
LMS are releasing details of their APIs
(Application Programming Interfaces)

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

13

to third-party developers, to allow
their Learning Management Systems to
become a more integrated component
of any wider technical architecture
that an institute might employ.
Examples of this include Blackboard’s
Extend Blackboard programme
(http://www.blackboard.com/addons/
b2/faq.htm#Question1) and WebCT’s
technical references and integration
documentation.

If all live up to the ideals they are
promoting and the support for open
standards they aspire to, the arguments
for and against the use of each type
of software will not be as extreme as
they first were and sometimes still seem
to be. Recognition and collaboration by
open source and commercial developers
may ultimately see a blending of projects
or even easier sharing of resources
and learning objects. The focus then
would not be on which system is
most appropriate, but on cooperation,
sharing, and ultimately improvement of
all learning environments that we create
in the future.

REFERENCES

Beckman, P., & Wilson, G. V. (2000, June).

Open source meets big iron. Dr. Dobb’s
Journal: Software Tools for the Professional
Programmer, 25(6), 30.

Campus Technology. (2004). Syllabus2004
conference yearbook. Retrieved December 1,
2004, from http://www.campus-
technology.com/mag.asp

Dalziel, J. (2003). Open standards versus open
source in e-learning: The easy answer may
not be the best answer. Educause Quarterly,
4, 4–7. Retrieved April 10, 2004, from
http://www.educause.edu/asp/
doclib/abstract.asp?ID=EQM0340

Dougiamas, M., & Taylor, P. C. (2003). Using
learning communities to create an open source
course management system. Refereed paper,
presented at EDMEDIA 2003. Retrieved

April 12, 2004, from http://moodle.org/
doc/?frame=philosophy.html

Gabriel, R. P., & Goldman, R. (2002). Open
source: Beyond the fairy tales. Retrieved
April 25, 2004, from http://opensource.
mit.edu/papers/gabrielgoldman.pdf

Glass, R. L. (2003). A sociopolitical look at
open source. Software Practitioner
Newsletter & Journal of Systems and
Software, Communications of the ACM,
46(11), 21–23.

Newman, N. (1999). The origins and future of
open source software. A NetAction white
paper. Santa Barbara, California:
NetAction. Retrieved April 15, 2004, from
http://www.netaction.org/opensrc/
future/breakdown.html

Olsen, F. (2003). Sharing the code. Retrieved
April 15, 2004, from http://chronicle.
com/free/v49/i47/47a03101.htm

Reynolds, R. (2003). It takes a village to build
good software and education. Retrieved
April 12, 2004, from http://www.xplana.
com/articles/archives/Building_Good_
Software_Education/print

Scalise, S.G. (2004). The future of e-learning in
learning management systems. Retrieved
April 20, 2004, from http://www.
syllabus.com/news_article.asp?id=8901&
typeid=155

Siemens, G. (2003). Free and open source
movements, Part 1: History and philosophy.
Retrieved April 18, 2004, from
http://www.elearnspace.org/Articles/
open_source_part_1.htm

Special Interest Group on Open Source
Software in Education in Europe
(SIGOSSEE). Web page explanation of the
SIGOSSEE. Retrieved May 16, 2004, from
http://www.ossite.org/about_sigossee/

Stallman, R. (1998). The GNU project.
Retrieved April 15, 2004, from
http://www.gnu.org/gnu/thegnuproject.
html

Vento, C. (2004). Open systems and open source
LMS: Settling the debate for the benefit of
higher education. Retrieved May 5, 2004,
from http://www.syllabus.com/news_
article.asp?id=9267&typeid=155

Journal of Distance Learning, Vol 9, No 1, 2005 © Distance Education Association of New Zealand

14

Wilson, G. (1999). Is the open source
community setting a bad example?
Software, IEEE, 16(1), 23–25.

Wyles, R., & Clayton, J. (2004). Supporting free
and open source solutions. Discussion
paper. Retrieved November 23, 2004, from
http://eduforge.org/docman/view.php/
7/40/Sustainability%20June04.pdf

Philip Roy is an E-learning Facilitator for the
College of Humanities and Social Sciences,
Massey University, and a Flexible Learning
Leader in New Zealand. The multimedia writer
for NZ Macguide Magazine, he owns and
operates NZMac.com. Roy uses a wide range
of open source software and has contributed to
many projects.

